Universal Gravitation (1687, Principia)
Newton's take on orbits was quite different. For him, Kepler's laws were a manifestation of the bigger "truth" of universal gravitation. That is:
All bodies have gravity unto them. Not just the Earth and Sun and planets, but ALL bodies (including YOU). Of course, the gravity for all of these is not equal. Far from it. The force of gravity can be summarized in an equation:
or.... the force of gravitation is equal to a constant ("big G") times the product of the masses, divided by the distance between them (between their centers, to be precise) squared.
Big G = 6.67 x 10^-11, which is a tiny number - therefore, you need BIG masses to see appreciable gravitational forces.
This is an INVERSE SQUARE law, meaning that:
- if the distance between the bodies is doubled, the force becomes 1/4 of its original value
- if the distance is tripled, the force becomes 1/9 the original amount
- etc.
Weight
Weight is a result of local gravitation. Since F = G m1 m2 / d^2, and the force of gravity (weight) is equal to m g, we can come up with a simple expression for local gravity (g):
g = G m(planet) / d^2
Likewise, this is an inverse square law. The further you are from the surface of the Earth, the weaker the gravitational acceleration. With normal altitudes, the value for g goes down only slightly, but it's enough for the air to become thinner (and for you to notice it immediately!).
Note that d is the distance from the CENTER of the Earth - this is the Earth's radius, if you're standing on the surface.
If you were above the surface of the earth an amount equal to the radius of the Earth, thereby doubling your distance from the center of the Earth, the value of g would be 1/4 of 9.8 m/s/s. If you were 2 Earth radii above the surface, the value of g would be 1/9 of 9.8 m/s/s.
The value of g also depends on the mass of the planet. The Moon is 1/4 the diameter of the Earth and about 1/81 its mass. You can check this but, this gives the Moon a g value of around 1.7 m/s/s. For Jupiter, it's around 2.5 m/s/s.
No comments:
Post a Comment